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A model of elastically and anelastically 
produced temperature derivatives of acoustic 
wave velocities in inorganic oxide glasses 

B. BRIDGE,  N. D. PATEL 
Brunel University, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UK 

The temperature dependence of 15 MHz ultrasonic bulk wave velocity in the range 4 to 600 K 
has been measured in the entire range of glasses that can be prepared by mixing MoO3 with 
P20~ in open crucibles. In all cases the temperature gradients are negative. However, when the 
contribution to the velocity variation caused by (anelastic) two-well  relaxational effects is 
subtracted, the residual velocity variation is always positive with respect to temperature. It is 
suggested that this effect, which has been reported to be present in other glasses but not in 
crystals, is still caused by two-well  systems, but is elastic in nature. It is argued that under 
certain conditions the expansion of a glass due to increases in temperature softens the vibra- 
tions of particles in transverse two-well  systems. In the simple case of wave propagation along 
a chain this leads to a positive temperature gradient of the shear modulus, and in an isotropic 
system positive gradients will similarly be caused in all elastic moduli. A detailed model is 
presented to justify the proposal quantitatively by identifying the conditions under which such 
behaviour could take place. One cause would be the presence of an appreciable number of 
two-well  systems of barrier height ~kT at room temperature. For the MoO3-PzO~ system it is 
estimated that 25% of cation-cation spacings contracted by between 0 to 1% from equilibrium 
(crystalline) values, to produce barrier heights ~< 0.005 eV, would explain the observations. On 
the other hand an appreciable fourth-power term in the transverse force potentials (i.e. high 
third-order bending force constants) would cause a similar effect even if a much smaller 
number of barriers were present, but of height >kT indeed, such a mode softening term has 
exactly the opposite effect on the temperature gradients of velocity to what it has in single- 
well systems. 

1. Introduction 
The MoO3-P~O5 glass system has proved to be a most 
interesting, perhaps unique one. In a number of 
papers [1-4] the present authors have shown it to 
exhibit changes in sign (and perhaps discontinuities) 
in the composition gradient of a number of physical 
properties. These include the elastic moduli at room 
temperature, the melting temperature and a number 
of parameters associated with ultrasonic relaxation 
absorption. Of particular note is the fact that 
sometimes there is one change in sign whilst with other 
properties there are two. Much work still needs to be 
done before a coherent structural model explaining 
all the observations can be assembled. The present 
reported observations on the behaviour of ultrasonic 
longitudinal wave velocity, on increasing the tempera- 
ture from 4 to 600 K, are no less striking than the 
previous data. No experimental details of the prepara, 
tion and chemical characterization of the glasses 
are given here as full documentation exists elsewhere 
[1, 4]. 

2. Experimental procedure 
Measurements were performed on 1.6 mm diameter x 
5 mm thickness rods with 15 MHz X-cut quartz trans- 

ducers. The rods had optically polished faces flat to 
within 1 to 2 seconds of arc after preparation with 
Metals Research (Metals Research Ltd, Melbourn, 
Royston, UK) equipment (Multipol T1 polishing 
machine and a Mk III polishing jig adjusted by means 
of an autocollimator). The specimens were coated 
with vacuum-evaporated aluminium to provide an 
earth electrode and permit the use of uncoated trans- 
ducers. The procedures for sweeping the sample tem- 
perature from 4 to 300 K, using a commercial cryostat 
(Oxford Instruments) were exactly as described in a 
previous paper on relaxation absorption experiments 
[4]. The method of changing the ambient temperature 
between 300 and 600 K using a purpose-built furnace 
and sample holder have been described elsewhere [5]. 
For coupling the specimens to the transducer, Nonaq 
stopcock grease was found satisfactory for 4 to 300 K, 
whilst for 300 to 600 K the best of many materials 
tried was OV-25 (a silicon-based grease chemically 
described as a gas chromatographic stationary phase) 
supplied by J.J's Chromatography Ltd., Hardwick 
Industrial Estate, King's Lynn. 

The pulse echo apparatus described by Higazy and 
Bridge [6] was employed. Here fairly long pulses of 
fast rise time are first propagated so that corresponding 
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cycles in successive echoes are readily identified. 
Time delays between them are measured to + 0.2 nsec 
absolutely and relatively to + 100 psec with a digital 
delay generator based on a 100 MHz clock. The time 
delay so obtained is next used to identify correspond- 
ing cycles in successive echoes of long echoes of slow 
rise time. From the measured time delay between these 
cycles the true phase velocity is obtained. Once corres- 
ponding cycles have been labelled in this way by the 
digital delay pulse, it is a simple matter to keep track 
of each cycle as the ambient temperature is gradually 
changed and the evaluation of the time delay with 
temperature thus obtained. Whilst this measurement 
technique is much simpler to set up than others based 
on a frequency counter and requiring cyclic matching 
technique (pulse-echo overlap, pulse superposition 
etc.) there is no evidence that it is any less sensitive for 
most kinds of sample. A distinct advantage is that it is 
automatable, i.e. the programmable delay generator 
can be interfaced to an on-line computer, although 
this has not been done by the authors. Corrections for 
sample expansion were carried out using expansion 
data for the temperature range from 300K to the 
transformation temperature only [7], assuming that it 
could be extrapolated to the lower temperatures. For- 
tunately, as the correction was small, errors due to 
anomalous expansion behaviour are likely to be quite 
small. 

3. Comparison of results w i th  previous 
work  on other glasses 

It is well known that whereas in pure dielectric crystals 
the temperature coefficients of ultrasonic wave veloci- 
ties are small and negative, much larger gradients, both 
positive and negative, are found in glasses [8-10]. 

The fractional change in the velocity (Or - Che)/eho, 
where cr is the velocity at temperature T and ehe the 
velocity at 4.2 K, is plotted in Figs 1 and 2 for all the 
M o - P - O  glasses. The velocity decreases steadily with 
increasing temperature. Although the mean coordina- 
tion number of these glasses ranged from 3 to 5, there 

is no true evidence of a minimum occurring, unlike 
that which has been observed in other tetrahedral 
coordinated glasses such as SiO2, GeO2, Zn(PO3)2 and 
BeF 2 (see Fig. 1). However, a slight inflexion is observ- 
able for all the glasses at around room temperature. 
The velocity at constant temperature decreases with 
increasing amount of MoO3 content in the range 0 to 
53 tool % MoO3 and then increases in the range 53 to 
86 tool % MoO3 (see Fig. 3). 

Superficially, it would appear that all glasses 
studied so far can be divided into two classes in 
respect of the velocity variation when the temperature 
is increased from about 4 K. Firstly, there are those 
glasses which start with a negative temperature gra- 
dient, changing to a positive gradient at high tem- 
peratures. Secondly, there are the glasses in which the 
temperature gradient always remains negative. The 
present glass system with the inflexion instead of a sign 
change at an intermediate temperature is something of 
a borderline ease. However, the distinction, in our 
opinion, is an artificial one based on a lack of analysis 
in previous literature of the different possible contri- 
butions to the velocity change. It is generally accepted 
that all glasses exhibit an ultrasonic relaxation absorp- 
tion with a broad distribution of Arrhenius relaxation 
times, and it is readily shown (Section 4) that the 
association velocity dispersion leads essentially to 
negative temperature gradients of velocity. Plausibly, 
if this effect is strong enough, the residual velocity 
variation obtained on subtracting the relaxational 
contribution might be positive with respect to tem- 
perature in all glasses, and the dual classification of 
glasses disappears. In effect, the positive temperature 
gradient of non-relaxational origin becomes a 
property quite generally characteristic of the vitreous 
state (rather like two-well relaxation absorption), 
since for crystals the gradient is always negative. 
In Section 5 we propose a model which indeed 
allows positive and negative temperature gradients of 
velocity in glass whilst permitting only negative 
gradients in crystals. 

% 
N 
A 

I,., 

<3 

o 

l> 

m 

' / S i ' 0  2 ' ' 

- ° ° °  ~ • • • 
° 

oe  . e °  

DO @l • uO $ 1 0 ° @  0 0 0 0 0 1  
O0 Q@D 0 . ~ A ~  

{d) 
° °ooooeooo  ° 

• . .  ( c )  • 
• °=e * * °  

"°°.o,,!b) 
2 , ,  

° a  

°=  
*o 

" ' . .  l a )  

e °  e l  

I I I I 
1 2 0  2 4 0  3 6 0  4 8 0  

TEMPERATURE (K) 

Figure 1 Fractional variation of the longitudinal 
sound wave velocity ( e T -  eh~)/ch~ with tem- 
perature in Mo-P-O glasses at 15MHz: (a) 29.2, 
(b) 37.5, (c) 44.2, (d) 47.4mol % MoO 3. For SiO z, 
GeO2, Zn(PO3) 2 and B203 glasses, the data have 
been taken at 20 MHz from Krause and Kurkjian 
[9]. Full circles represent the experimental values for 
Mo-P-O glasses. (ehe = velocity at 42 K). 
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Figure 2 Fractional variation of  the longitudinal 
sound wave velocity ( e T -  eho)/eho with tem- 
perature in M o - P - O  glasses at 15MHz: (a) 55.0, 
(b) 61.6, (c) 69.5, (d) 80.8 mol % MOO3. For  GeO: 
and Zn(PO 3)2 glasses, the data have been taken at 
20 MHz from Krause and Kurkjian [9]. Full circles 
represent the experimental values for M o - P - O  
glasses. (eh~ = velocity at 4.2 K). 

4. Residual  ve loc i ty  var ia t ion  in 
M o - P - O  glasses a f te r  subt rac t ion  
of  anelast ic  c o n t r i b u t i o n  

We shall make the usual assumption that a glass 
behaves like a standard linear solid [1 1, 12] with low 
dispersion and a broad distribution of relaxation 
times, z. The internal friction Q i and phase velocity 
c for wave propagation can thus be written [1 1-13] 

Q 1 _ 2~c _ foC(Z)c0zdz  ,.~ ~ C~oz~ 
c~ 1 -}- ( .O 2 T 2 ~ - 1 + 092z~ 

(1) 

( 1 _C(z! dz "~ 

cod 1+o 2  (2) 
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Figure 3 Fractional variation of the longitudinal sound wave veloc- 
ity (c r - Che)/Che with composition at constant temperature T in 
Mo ~ O  glasses at 15MHz. 

where e is the wave absorption coefficient in nepers 
per unit length, 09 is the angular frequency, coo is the 
phase velocity for 09 ~ ~ ,  and C(z)dr  - Ci, is the 
relaxation strength for absorption processes with 
relaxation times in the range r to (~ + dr). One can 
express C(z) in the form AM/M where M is the 
appropriate unrelaxed modulus obtaining at 09 ~ m, 
and AM is the contribution to the difference between 
the unrelaxed modulus (i.e. the change in elastic 
modulus) caused by all relaxation processes with relax- 
ation times in the range z to (z + d'c). The summations 
on the right-hand side are approximations to the 
integrals on their left and are suitable for numerical 
manipulations by computer. Here C~(5 V)/5 V = C(V) 
where 6V = V~- V~_,, the interval between the 
energies in consecutive terms in the sum, so that 
EC, = ~o C(V)dV. 

If we make the usual assumption that the relaxing 
mechanisms are particles in double-well potentials of 
barrier height V, and asymmetry (separation of  two- 
well minima) A, then [4, 13, 14] 

= z0 exp (V/kT) [1 + exp (A/kT)] -1 (3) 

D 2 (d[1 + exp (A/kT)] 1) n(A)n(V)dA dV 
C(Qdz = ~ _ dA 

(4) 

where k is Boltzmann's constant, T is absolute tem- 
perature, %1 is the classical vibration frequency 
(attempt frequency) for the particles in either well, D 
is the energy shift of  the two-well states in a strain field 
of unit strength, averaged over all possible well 
orientations, Q is the density, n(V)d V is the number of  
two-well systems with barrier height in the range V to 
(V + dV), and n(A)dA is the number of  two-well 
systems with barrier height in the range V to (V + 
dV), having assymetries in the range A to (A + dA). 
In performing the integrations in Equations 1 and 2 it 
will usually be satisfactory to neglect variations in 
D and z0 compared with the more drastic effect of  
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Figure 4 Fractional variation of the longitudinal sound wave veloc- 
ity (cT - Che)/Che with temperature in Mo-P-O glasses at 15MHz: 
(a) 29.2, (b) 37.5, (c) 44.2, (d) 47.4mol % MOO3. Solid line rep- 
resents the experimental values and dashed line shows the theoreti- 
cal fit as explained in the text. 

variations in V and A inside the exponential functions. 
Clearly an infinite number of C(z) functions can 
be fitted to experimental Q-1 and e data, depending 
upon the choice of n(A) and n(V)  which we treat as 
unknowns. One extreme simplifying assumption is to 
write n(A) = no, a constant independent of A and V. 
If a sharp cut-off in the integrations is adopted at 
A = 2kT  (the contributions to the integrals being 
small for A >/ 2kT) ,  one finds [4, 15] that in the 
integrals of Equations 1 and 2 

C(z) dz = C(V)  d V  = (2noDZ/oe2)n(V) d V  (5) 

and 

z = z0 exp (V /kT)  (6) 

i.e. the relaxation strengths are independent of tem- 
perature. An assumption of  the opposite extreme is 
to assume n(A) = 0 for A # 0 (symmetric wells) 
which results in z = 2% exp (V /kT)  and C(z) dz = 
(D2/4Qc2kT)n(V) dV, i.e. relaxation strengths pro- 
portional to reciprocal temperature. We shall pursue 
further only the first model which in our opinion is the 
most plausible, at least for the present glasses. It is 
entirely reasonable that A can be comparable with V, 
given that the mean energy kTm available at the melt 
preparation temperatures [2] (Tin ~ 855 to 1475 K) 
for producing frozen-in assymetries is ~0.065 to 
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O. 113 eV, comparable with the range of  mean activation 
energies Vp of 0.07 to 0.123 eV [4], obtained by assuming 
that the temperature dependence of  the loss peaks 
follow the Arrhenius law 

coz0 exp (Vp/kT) = 1 (7) 

We anticipate that this relationship will hold approxi- 
mately irrespective of the precise form of  the C ( V )  
function in Equation 1, although it becomes almost 
exact [15] if one assumes n(V)  = (1/Vp)exp ( - V ~  

Substituting C ( V )  d V  = C(z) dz in Equation 1 we 
have previously obtained [4] an experimental value of 
C(V)  for each glass by fitting to the measured data on 
the temperature and frequency dependence of Q-I .  
An excellent fit was obtained in all cases, suggesting 
that other attenuation mechanisms were negligible 
compared with the relaxation loss. Further, by assum- 
ing n(A) = no for A < Vp and zero for A > Vp, no 
becomes Vp -1 so that the total number of  two-well 
systems per unit volume, n, could be calculated from 
the equation 

n = f :  n(V)  d V  = (oc2Vp/2D 2) f C ( V )  d V  (8) 

after adopting a value of  D given by our theoretical 
model of  the deformation potential [4]. 

It is clear by inspection of  Equations 2, 5 and 6 that, 
irrespective of the precise form of C(V), the relaxation 
always causes e to decrease with increasing tempera- 
ture. As T ~ 0, C ~ coo; thus we can assume that the 
velocity at the lowest temperature (4 K), Ch~ ~ Coo, so 
that 

( C  T - -  C h e ) / C h e  - -  
1 f~ C(V) d V  
2 J0 1 + co2z2o exp (2V/kT)  

1 E 
2 i 1 +  o)2z2exp (2V/kT) 

(9) 

The C ( V )  functions, so precisely fitted to the Q-1 
data, were used in this equation to obtain the tempera- 
ture dependence of e caused by two-well relaxing 
systems in the glasses. The results are displayed as 
dotted lines in Figs 4 and 5. It is clear that in all cases 
the temperature gradient of  c, due to relaxation, 
is substantially more negative than the observed 
gradient at all temperatures. Thus there is a residual 
velocity variation due to other causes, which is always 
positive with respect to temperature changes at all 
temperatures investigated. 

5. Interpretation of results 
We present a linear chain model which predicts the 
possibility of both positive and negative temperature 
gradients of  velocity in glasses and negative gradients 
only for crystals. The gradients are purely elastic 
in origin, arising from anharmonicities in the inter- 
atomic force potentials, and follow from a simple 
analysis of  longitudinal and transverse vibrational 
modes. Gruneissen constants are not calculated; how- 
ever, the presentation has the advantage of giving a 
clear physical picture of the anharmonic effects in 
acoustic wave propagation. 
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Figure 5 Fractional variation of the longitudinal sound wave veloc- 
ity (c r - ch~)/Ch, with temperature in Mo-P-O glasses at 15 MHz: 
(a) 55.0, (b) 61.6, (c) 69.5, (d) 80.8mo1% MoO s. Solid line rep- 
resents the experimental data and dashed line shows the theoretical 
fit as explained in the text. 

5.1• Long i tud ina l  v ib ra t ions  
The potential energy of  a pair of atoms displaced by 
an amount  X from their equilibrium separation at 0 K 
can be written 

U ( X )  = A X  2 -  B X  3 - C X  4 (10) 

where A, B, and C are all positive. So the restoring 
force tending to return the atoms to their equilibrium 
separation is 

0U 
F - O X  - a X  + b X  2 + c X  3 (11) 

where a = 2A, b = 3B and c = 4C and the nega- 
tive sign indicates that F acts in the opposite direction 
to X. The first term in Equation 11 represents the 
harmonic (Hooke's law) approximation. The second 
(anharmonic) term produces an asymmetry in F, 
depressing the level of  IFL below the Hooke's  taw 
value for positive X, whilst increasing IF[ above the 
Hooke's  law value for negative X. The third term, 
symmetric with respect to F, causes [ F[ to increase less 
rapidly with ]X[ at large vibrational amplitudes - an 
effect known as the softening of the vibration [16] - 
which has pronounced influence during phonon mode 
softening in materials which show incipient acoustic 
mode instabilities. 

= ( b / a 2 ) k T  

X 2 = k T / a  

so that 

For  a small extra displacement (i.e. additional to 
that caused by thermal vibration) AX, caused by an 
external applied stress acting along the chain axis (as 
in a longitudinal acoustic wave), the effective elastic 
modulus is 

M L  = nro = nr  o l a -  2 b X -  3 c X  21 (12) 

where r0 is the equilibrium atomic spacing in the chain 
(bond length) and n is the number of  bonds per unit 
cross-sectional area perpendicular to the chain. For  
X ~ 0 ,  M L ~ ( M L ) 0  = nroa, so defining AML = 
(ML)o -- ML, 

A M  L 2 b X  + 3 c X  2 
- ( 1 3 )  

(ML) 0 a 

AM oscillates with X during a thermal vibration. 
Defining a mean value we have 

A / ~  L 2b)( + 3c)? 2 
(14) 

(ML) 0 a 

Assuming, for simplicity, classical Boltzman statistics 
(even though the approximation is a poor  one at the 
temperatures considered here), i.e. a weighting factor 
of exp ( -  U / k T )  on all values of X and X a, 

(15) 

(16) 

and 

J 

(17) 

(is) 

On the right-hand side the first term might be des- 
cribed as the thermal expansion term, whilst the 
second one is the mode softening term. Although a, 
the "first-order stretching force constant", is often 
well known from independent sources, b and c are 
generally not. It would be worthwhile to rewrite 
Equation 18 in terms of  directly measurable quan- 
tities, if possible, and in fact this can be done using the 
expansion coefficient. At the same time the preceding 
model can be improved by writing 

= ~ r o T  (19) 

instead of  Equation 15 and allowing for the effect of  
transverse vibrations on the expansion ~" as follows. 
From classical Boltzmann statistics the expansion 
coefficient caused by longitudinal vibrations is [17] 

~L = bk /a2ro  (20) 

Assuming that during a transverse vibration of  an 
atom in a chain there is a tendency for the equilibrium 
atomic separation r0, to be maintained, a vibration of  
mean displacement y2 produces a longitudinal con- 
traction of 

q 

a x ~  = ( 8 -  r = )  '/= - ro 
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and since from Boltzmann statistics 

y2 ,~ kT/a' (21) 

where a' is the first-order bending force constant, the 
expansion coefficient due to transverse vibrations is 

a T - -  ~ (22) 
r0 2a' r~ 

Assuming that the experimental expansion coefficient 
is 

0~ = a L -3 I- a T (23) 

Equations 19, 22, 23 and 18 can be combined to 
eliminate b, yielding 

1 ( e e L ' ] _  1 (~ML~ 
(CL)0 ~TJ 2(ML)o \ t?T J 

1 (2r~oa(a + k/2a'r~)a 3~k'~ 
- 2 _ k + a2J 

(24) 

where cL is the speed of longitudinal wave propagation 
along the chain. Further one can write, identifying the 
speed at liquid helium temperature (eL)he with (eL)o, 

( e L )  T - -  ( e L ) h e  

(CL)he 
1 [ 2r~a(a + k/Za'ro)a 3ck] 

- 2  [ k + a2J  
(T Tho) 

(25) 

In the above two equations all quantities in the first 
term on the right-hand side are either known (inde- 
pendently of the left-hand side) or reasonable guesses 
can be made (ordinarily a' is one order of magnitude 
less than a), and the second term will be relatively 
small. One can use Equations 24 or 25 to check 
if sensible orders of magnitude for temperature 
gradients of modulus or velocity are given by our 
model. We shall try this for the MoO3-P205 glass 
series. For pure P205 we have r0 = 1.56 x 10 10 m, 
a = 450Nm - ~ , a '  ~ 4 5 N m  -j and a ,,~ 15 x 10 -6 
(extrapolated from the glass of lowest MoO 3 content). 
For T = 293 K, substitution in Equation 25 yields 

(CL)293 - (eL)he - 7 3  x 10 -3 
(eL)ho 

For a glass of the highest MoO3 content, a ~ 9.5 x 
10 -6, F 0 ~ 1.9 X 10-~°m, and from Table 2 of 
Bridge and Patel [4] (assuming that a' ~ a/10), a 
260Nm -2 and a' ~ 2 6 N m  =2, implying that 

(CL)293 - -  ( e L ) h e  - 3 1  x 10 3 
(eL)he 

These values compare rather favourably with the 
range of experimental extremal values of  ~ - 4 0  x 
10 -3. However, as stated earlier, if we accept the 
correctness of the relaxation contribution to negative 
temperature gradients of velocity, we are looking for 
an alternative mechanism which produces positive 
gradients. 

More rigorously, for the vibrations of an atom in a 
chain, we ought to be considering a symmetric poten- 
tial in which each atom moves between two others, 
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rather than the asymmetrical potential of Equation 
10. Superficially, the symmetric potential appears 
to give zero expansion coefficient. To resolve this 
anomaly one needs to remember that the symmetric 
potential is obtained by Overlapping two asymmetrical 
potentials like Equation !0, and the mean overall 
width of the symtnetrical resultant (i.e. the separation 
of the two outside atoms) is increased, by thermal 
vibrations, i.e. by the asymmetrical component of 
Equation 10. To see this we need only write Equation 
10 in the fo~____ (neglec_tting the small fourth-order__ term) 
U(X) = AX  2 - BX 3 ~ (A - -  B a T ) X  2, i.e. form- 
ally equivalent to a symmetrical potential with a tem- 
perature-dependent Hooke's law force constant. 

The only important factor missed by considering a 
two-atom rather than a three-atom potential is the 
existence of a central barrier caused by gross elonga- 
tions of the outside atoms from equilibrium positions 
(longitudinal two-well potentials). Classically, for a 
given particle energy E relative to the well bottoms 
(E > barrier height V) the velocity v of the particle in 
the vicinity of the barrier is [2(E - U)/m] ~/2, where m 
is the particle mass, so that the vibrations soften, i.e. 
ME decreases, with increasing V. As thermal expansion 
can only increase V (albeit a tiny effect), the effect 
of the barrier is simply to contribute further to a 
negative dML/dT (this conclusion is confirmed by a 
detailed calculation in the later section on transverse 
vibrations). Finally, a more exact, fuller calculation of 
AML/(ML) o (for comparison with Equation 17, i.e. 
neglecting the effect of transverse vibrations on c0 is 
given by 

ML = 

and writing 

exp = exp \ 2kT J 

4] 
yields an almost identical result in the same order of 
approximation (dropping terms of higher than fourth 
power): 

AML c 

As r0, a, a' and c are positive, for a positive Equation 
24 suggests that ~3M/~T (and correspondingly ~c/~3T) 
is always negative, which is indeed the case for all 
crystalline solids and for many glasses (including ours) 
over most of their temperature range. However, the 
anomalous positive ~c/dT gradients which exist for 
tetrahedrally coordinated glasses like silica [9, 10, 18, 
19] and BeF2 over large temperature ranges (at high 
temperatures) cannot be explained by our simple 
model, nor can the residual positive Bc/OT gradients 
occurring after subtracting the contribution due to 
two-well relaxation in our own glass series and prob- 
ably in many others. Actually if we considered just 



the case of vitreous silica, taking account of its 
anomolously low expansion coefficient, Equation 17 
remains fairly credible; for it predicts ~M/OT ~ 0 for 

~ 0, i.e. the equation predicts a swing from large 
negative gradients for large ~ and rather small nega- 
tive gradients for ~ --, 0, and we could argue that the 
reason why the gradient does not actually become 
positive in the latter case is because of the crudity of 
the model. However, this whole argument fails when 
one considers that the other tetrahedrally coordinated 
glasses all have c~ values as high as those in normal 
glasses, i.e. those with negative Oc/OT. The above facts 
suggest that the behaviour of transverse vibrational 
modes must be examined to explain the positive gra- 
dients. However, it is worth noting that longitudinal 
vibrations alone (Equation 24) do give a positive ~c/ 
OT when ~ is negative - an extremely rare but not 
unknown occurrence. 

5.2. Transverse vibrations 
For an atom vibrating transversely between two 
others in a chain, the force potential is symmetric with 
respect to a displacement Y from and normal to the 
chain axis. Moreover, if the atomic spacings in the 
chain are contracted by a fraction e relative to the 
equilibrium value (e = actual spacing/the equi- 
librium spacing, so that e decreases with increasing 
contraction) a deformation from harmonic form 
occurs in the potential even for Y ~ 0. We shall 
represent the deformed potential in the form 

U(Y)  = A ' Y  2 - B ' Y  4 + v e x p  ( - d Y  2) (26) 

where A', B', v and d are always positive, the y4 term 
represents the usual mode softening at high vibrational 
amplitudes, whilst the Gaussian term represents the 
distortion specifically caused by the contraction e. For 
the simple case of central forces the theoretical (quan- 
titative) form of U(Y)  as a function of e has been 
calculated by Bridge and Patel (Fig. 5b and Equation 
19 of [4]). The behaviour can be reproduced by 
Equation 26 by assuming that both v and vd increase 
with decreasing e. The result is that for a sufficiently 
large e such that a/2vd < 1 (where a ' =  2A') a 
double well appears in U(Y)  with central barrier 
height 

(a)[ V ~ v -  ~-~ 1 - In ~-d (27) 

and half-width (half the separation of the two-well 
minimum) 

( at "~ 1/2 
W ~ [ - ( 1 )  l n \ 2 ~ / j  (28) 

where the small fourth-power term has been neglected 
in making these calculations. 

The force on the vibrating atom subject to the 
above potential is 

F = -OU/c3Y = - [ a ' Y  2 - b 'Y  3 

+ 2vdY exp ( -  dY2)] 

Let there be n bonds per unit cross-section, n - n' of 
them associated with normal potential wells and n' of 

them associated with wells containing a deformation 
of the form of the Gaussian term in Equation 26. The 
shear modulus associated with a small change d Yin Y 
is 

Mr = r0 ](n - n')(~F/OY~) + n'(OF/~Y2)[ (29) 

where (OF/O Y~) is the derivative of the first two terms 
only on the right-hand side of Equation 28, (OF/OY2) 
is the derivative of all three terms, and Y~ and Y2 
denote the particle Y coordinates in the two kinds of 
well, which are not necessarily equal for averaging 
purposes. The result of this differentiation is 

MT = n r o { a ' - - ( 1 -  ~[)3b'Y12 

- ( ~ [ )  [3b'Y22 + (2vd-4vdZY22)  exp(-Y22)]}  

(30) 

Now a temperature increase will reduce the frozen-in 
contractions which occur in glasses, i.e. e increases 
with T. Correspondingly both v and vd will decrease 
with increasing temperature. Since the two terms con- 
taining these variables are of opposite signs the impor- 
tant point is that both positive and negative tempera- 
ture gradients of Mx (the value of M-r averaged over all 
possible Y~ and Y2 values) are possible. Whilst Yl 2 can 
simply be taken as equal to kT/a', the ordinary "classi- 
cal value" in the same degree of approximation as 
used for our analysis of longitudinal vibrations, the 
difficult step in justifyin__gg our proposition quan- 
titatively is to calculate Y22. For arbitrary v and vd 
values, classical Boltzmann statistics yield products of 
exponentials which are not readily integrable, and in 
any case such a non-quantum treatment is probably 
not very realistic. For the present we shall consider 
only two extreme simplifying cases. 

5.2. 1. High potential barriers (V >> kT) 
For barrier heights V >> k T  the atom vibrates in 
either of the two wells (with a mean energy that classi- 
cally would be ~ kT)  with occasional thermal excita- 
tion over or tunnelling through the barrier. Subse- 
quent calculations will show that the barrier width W 
will be much greater than the classical vibrational 
amplitude (i.e. ~ (kTd/a') 1/2) in either well. In this case 
the square root of Y22 can be taken (Fig. 6) as approxi- 
mately equal to half the barrier width, i.e. 

Y22 ~ - ( l / d ) I n  (a'/Zvd) = W 2 (31) 

Substituting this value and y2 ~ kT/a' in Equation 30 

(32) 

Now as T increases, thermal expansion causes e to 
increase and vd decreases. Since a'/2vd < 1, In (a'/ 
2vd) < 0 and it becomes less negative with increasing 
T, leading to a negative contribution to dMT/dT. 
However, as shown by subsequent calculations, W 
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simultaneously decreases with increasing e so that the 
positive expression b'W decreases with increasing tem- 
perature, implying a positive contribution to d&Cv/d T. 
The latter result is most intriguing. In physical terms 
the presence of double wells forces the particles to 
vibrate at ordinary temperatures in a region where 
the fourth-power mode softening term is significant, 
whereas ordinarily in single wells this term would only 
become significant at very high temperatures (high 
vibrational amplitudes). The reduction of barrier 
widths with increasing temperature then removes the 
particles to regions of less mode softening, thus to 
increase 37I T and give positive dJgIT/dT. Thus the 
mode-softening term gives exactly the opposite effect 
in a potential having a central barrier than it would in 
an ordinary single-well potential! 

5.2.2. L o w  potent ia l  barriers 
(V < kT, W2d  ~ 1) 

For low barrier heights < kT(or  single flat-bottomed 
wells occurring when a'/2vd > 1, i.e. ln(a'/2vd) 
positive, the particle vibrates in a single well. To a first 
approximation the vibrational amplitude is clearly 

2W, and Y22 ~ W 2. The calculation in the next 
section shows that even for very low barrier heights 
W 2 >> kTd/a'. So Y2 = cannot even approximately be 
represented by the classical expression kTd/a' applic- 
able to a harmonic well, and we use W 2 instead 
(Fig. 6) as a first approximation. The subsequent 
calculation also shows that W2d ,~ 1 for small V, the 
inequality increasing as V decreases. Under these 
conditions exp ( -  dY22) -+ 1, 4vd2 Yzf____~ 2vd, and 
Equation 30 approximates (writing Y12 = kT/a' as 
before) to 

AT = n r o [ a ' - ( 1 - ~ ) ( ~ , ) k T  

- ( ~ ) ( 3 b ' W 2 + 2 v d ) ]  (33) 

W 

~<1 lu{vzl 

Figure 6 The m e a n  square  v ib ra t iona l  amp l i t ude  Y2 2 in a t ransverse  
two-well  sys tem is ~ W 2 bo th  for V >> k T  and  V ~ kT.  
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Since both W and vd decrease with increasing e it is at 
once clear that W and vd will decrease as the tem- 
perature increases to reduce the frozen-in contractions 
in the glass. Thus the third (negative) term on the 
right-hand side decreases with increasing temperature. 
Thus MT increases with temperature (i.e. OMs/OT is 
positive). 

Noting that v, d and W are not independent vari- 
ables with respect to temperature changes, we have 

(CT)o \ OTJ 2(MT)o OT J 

6T + 6T J 

n 2(a') 2 (34) 

where 

(a(w2)) (6(w2)) 
6T J = 6e J ~ (35) 

6e ] ~ (36) 

and since the gradients in brackets on the right-hand 
side are negative, positive contributions to OcT/0 T and 
OMT/OT arise from the first term on the right-hand 
side of Equation 3.4. 

To summarize the cases of Sections 5.2.1 and 5.2.2, 
small thermal expansions will remove small barriers or 
well-flattening deformations to give a positive contri- 
bution to OcT/OT. Further expansion to make e > 1 
will increase the flattening of longitudinal wells and 
increase the negative contributions to OCT/OT. The 
latter effect is probably negligible, however, because a 
much greater value of [e - 11 is required to produce 
longitudinal two-well systems than transverse ones. 
The reduction of large tranverse barriers by thermal 
expansion can again produce both positive and nega- 
tive contributions through the b' and vd terms in the 
force potential, respectively. A large number of low- 
lying transverse wells (i.e. wells of low e value), which 
are to be expected from the usual spread of the pair 
distribution functions obtaining in oxide glasses, will 
clearly favour positive gradients. Without many fur- 
ther assumptions it is possible to calculate how Oc T/O T 
varies on balance in a particular glass - with the 
present state of the microscopic theory of two-well 
systems. However, as an example to check whether the 
above theory gives sensible orders of magnitude we 
shall try a calculation for the small barrier case 
(Equation 34), as the fewest assumptions on data to be 
used are involved here. 

According to the central force model of Bridge and 
Patel [4] the potential of an oxygen atom moving 
transversely between two identical cations in an oxide 
glass (Fig. 7) is given by 

2/3 U - -2c~ + __ 
r r m 

where ~ = Uoro/(1 - l/m), fi = Uo~/(m - 1)and  
r z = e2r~sin200 + r2cos200 + yZ. U0 is the bond 
binding energy, m is a large positive integer, 00 is half 



Z 

' ~ - -  /'1 ~ ~  e/ ' l  D 

Figure 7 Coord ina t e  sys tem used to define a t ransverse  two-well  

po ten t ia l  for an an ion  when  the ca t ion -an ion-ca t ion  angle  is less 

than  180 ° . 

the cat ion-anion-cat ion angle, r0 is the equilibrium 
atomic separation (bond length) and e (the elongation 
or contraction) is the ratio of  the cation-cation 
separation to the equilibrium separation r 0 sin 00. The 
model is not a purely central force one. Since it 
assumes that transverse vibrations take place along 
the straight line d rather than in an orbit to circumvent 
the central barrier, a degree of bond directionality is 
implicit in the model. The above relationships yield 

W = r0(l - e 2 sin200 - cos~00) 1/2 (37) 

ro (e 2 sin s 00 + cos 2 00)1/2 

+ - -  - - 1  
r~ ~ sin 200 + cos 200) m/2 

(38) 

Taking r0 = 0.256nm, U0 = 6.18eV and 00 = 70* 
(values appropriate  for the P - O - P  bond) and m = 9, 
e = 1.085eVnm and/~ = 4.229 x 10 8 eV(nm)9. 

The above explicit form of  potential is quite unsuit- 
able for performing the exercise of  the preceding sec- 
tion. We used the empirical form of  Equation 27 
because it was simpler to manipulate and demonstrate 
the physical principles behind the effect of  two-well 
systems on ~cr/OT. It  now remains, however, to com- 
pute values of  v and d which specify Equation 26 in a 
manner  consistent with Equations 37 and 38. For  a 
selected value of  e, values of  W and V computed from 
these equations can be substituted into Equations 27 
and 28 and the latter solved to yield v and d. As e 
decreases from one it turns out that V and W both 
increase, v increases and d decreases but at a slower 
rate so that vd increases. In MoOs-P205 glasses a 
temperature change from 4 to 293 K causes an expan- 
sion of  ~ 0.5% so it is reasonable to consider e values 
varying between 0.995 and 0.99. Vchanges from 0.014 
to 0.005 eV during this change, corresponding closely 
to the case of  Section 5.2.2 (V ~ kT)  for variations 
up to room temperature, implying the validity of  
Equation 33. Corresponding values of  other quantities 
are W =  0.146 × 10 l°m, v = 5.858 × 10-2°J, 
d =  4.2 × 105°m -2 and vd--- 24.6 for e = 0.995; 
whilst W =  0.207 × 10 10m, v = 7.125 × 10 20, 
d =  3.7 × 102o and v d =  26.3 for e = 0.99. In 

computing these values we have assumed that a 
450 N m l (Table 1 of  [4]) so that a '  ~ 45 N m ~ in 
Equations 28 and 29, taking a' ,,, a/lO as previously 
assumed in this paper. Thus we can define the follow- 
ing mean gradients for the range e = 0.995 to 0.99, 

b(vd) 
- 340 J m 2 (39) 

be 

and 

6(w 2) 
--4.3 × 10 2°m 2 (40) 

6e 

We shall assume that these figures will be approxi- 
mately applicable to the MoO3-P205 glass of  the high- 
est content that we have been able to obtain low tem- 
perature data on, i.e. the 29% tool MOO3, 61 mol % 
P205 glass, the M o - O  and ~ O  bond strengths being 
almost the same [7]. For this glass ~ = 12 × 10 -6 so 
that 

6(vd) 
- 4 . 0 8  × 10 3 J m - Z K  -I (41) 

bT 

6(w 2) 
- 5 . 1 6  × 10 -13 m 2K i (42) 

bT 

Since we have no independent means of estimating b' 
it will be useful to evaluate the contribution to OCT/C~T 
arising simply from the b(vd)/bT term in Equation 34 
(i.e. b' = 0, implying no anharmonicity at large Y, in 
which case for a temperature change 4 to 293 K we can 
write 

(cT)293 - (CT)h~ = -- 293 e (43) 
(Cx)he a~nn \ be / 

We now compare this result for shear wave velocity 
down a chain with our observations on compressional 
wave velocity in bulk glass. The reason why we con- 
sider such a comparison to be valid will be apparent  
from Section 5.3 below. For  29% MOO3, 61% P205 
glass, a ~ 3 8 0 N m  -I  (Table I o f  [4]) so a ' ~  
38 N m -I . Suppose that this and the value of  6(vd)/be 
from Equation 39 are substituted into Equation 43. 
Then in order to reproduce the experimental value of 
fractional velocity change between helium and room 
temperature, which is 8 × 10  -3  after subtracting the 
relaxation contribution, our model requires that n'/ 
n ~ 0.25. So we require that 25% of  P - O - P ,  
M o - O - P  or M o - O - M o  bonds have to have trans- 
verse barrier heights in the range 0 to 0.005 eV, corre- 
sponding to cat ion-cat ion fractional contractions in 
the range 0 to 1% (e = 1 to 0.99). 

I f  one inspects the pair distribution function for the 
S i -O spacing in fused silica [20], the half-width about  
the equilibrium spacing is such as to render it entirely 
plausible that such an appreciable fraction of low- 
lying deformations exist. Pair distribution functions 
for phosphate glasses are not yet known, but they are 
unlikely to be narrower than in the silica case. For  the 
MoO3-P205 glass series, the number of  two-well sys- 
tems as a fraction of the number of  oxygen atoms was 
computed by Bridge and Patel [4] from low-tempera- 
ture acoustic relaxation data. They found that n'/n 
varied from 2 to 3% across the glass range. There is no 
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inconsistency whatever between this figure and the 
above calculation and it is important not to confuse 
the two. Only barrier heights >~kT produce an 
appreciable contribution to acoustic relaxation, and in 
the relaxation measurements Bridge and Patel found 
an average barrier height of ~ 0.07 to 0.123 eV across 
the range (i.e. V/kT varied from 3 to 5 at room tem- 
perature). The more copious lower-lying two-well sys- 
tems, which we claim to be responsible for positive 
~c/OT via an elastic mechanism, do not contribute to 
the relaxation mechanism because V ~ kT. 

5.3. Isotropic materials and crystals 
For both bulk- and shear-wave propagation in glass 
(respective wave velocities denoted by CL and CT), in 
general the acoustic stress will not be orientated nor- 
mal or parallel to any given chain, and will cause 
combined bond stretching and bending effects. Thus 
one can define functions g and u by 

( ML 0MT) 
dT - g k a T '  d-TJ  

dT u \ d T  ' dT / 

making clear the possibility of positive and negative 
gradients in both cases. The pogitive gradients arise 
from an elastic interaction with transverse two-well 
systems. In a crystal there are no contracted inter- 
atomic spacings and thus no two-well systems, so that 
v = 0, d = 0 and only negative gradients exist. 

6. Conclusions 
Transverse double or flat-bottomed wells of  low 
barrier height can account for positive temperature 
gradients of elastic moduli and acoustic wave veloci- 
ties in glassy materials, by means of an elastic rather 
than relaxational interaction. In MoO3-P205 glasses 
about 0.25 double wells or flat wells per oxygen atom 
of barrier heights ~ 0.005 eV (i.e. < kT at 289 K) 
could explain the residual positive gradients after 
allowing for relaxational effects in the absence of the 
fourth-power "mode softening" term in the potential 
for transverse vibrations (Equation 27). On the other 
hand, a high mode softening term, i.e. a high value of 
b' in Equations 30, 32 and 33, could account for 
positive gradients even with smaller numbers of  two- 
well systems. It is clear that a complete understanding 
of temperature gradients of elastic moduli in glasses 

generally requires the measurement of both acoustic 
wave velocities and wave absorption as a function of 
temperature, so that the relaxational contribution to 
the gradients can be computed and subtracted from 
the experimental gradients. When this procedure is 
carried out it is entirely plausible that all glasses will 
exhibit positive gradients in the "elastic" contribution 
to the observed gradients. In effect this feature will be 
a characteristic specific to vitreous structure because it 
arises from two-well systems. 
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